255 research outputs found

    Development of fire-resistant wood structural panels

    Get PDF
    Structural panels made with Xylok 210 resin as the binder had a burn-through resistance at least equal to the structural panels made with Kerimid 500. Therefore, because of its comparative ease of handling, Xylok 210 was selected as the resin binder to provide the baseline panel for the study of a means of improving the flame-spread resistance of the structural panels. The final resin-filler system consisted of Xylok 210 binder with the addition of ammonium oxalate and ammonium phosphate to the strands of the surface layers, using 24% of each salt based upon the air-dry weight of the strands. This system resulted in a panel with a flame-spread code of about 60, a Class 2 classification. A standard phenolic based structural panel had a flame-spread greater than 200 for laboratory prepared panels. The burn-through tests indicated an average burn-through time of 588 seconds for the specimens made with the final system. This compares to an average burn-through time of 287 seconds for the standard phenolic base structural specimen. One full-size panel was made with the final system

    A User-centric Framework for Accessing Biological Sources and Tools

    Get PDF
    Biologists face two problems in interpreting their experiments: the integration of their data with information from multiple heterogeneous sources and data analysis with bioinformatics tools. It is difficult for scientists to choose between the numerous sources and tools without assistance. Following a thorough analysis of scientists’ needs during the querying process, we found that biologists express preferences concerning the sources to be queried and the tools to be used. Interviews also showed that the querying process itself – the strategy followed – differs between scientists. In response to these findings, we have introduced a user-centric framework allowing to specify various querying processes. Then we have developed the BioGuide system which helps the scientists to choose suitable sources and tools, find complementary information in sources, and deal with divergent data. It is generic in that it can be adapted by each user to provide answers respecting his/her preferences, and obtained following his/her strategies

    Diverse soil carbon dynamics expressed at the molecular level

    Get PDF
    The stability and potential vulnerability of soil organic matter (SOM) to global change remains incompletely understood due to the complex processes involved in its formation and turnover. Here we combine compound-specific radiocarbon analysis with fraction-specific and bulk-level radiocarbon measurements in order to further elucidate controls on SOM dynamics in a temperate and sub-alpine forested ecosystem. Radiocarbon contents of individual organic compounds isolated from the same soil interval generally exhibit greater variation than those among corresponding operationally-defined fractions. Notably, markedly older ages of long-chain plant leaf wax lipids (n-alkanoic acids) imply that they reflect a highly stable carbon pool. Furthermore, marked 14C variations among shorter- and longer-chain n-alkanoic acid homologues suggest that they track different SOM pools. Extremes in SOM dynamics thus manifest themselves within a single compound class. This exploratory study highlights the potential of compound-specific radiocarbon analysis for understanding SOM dynamics in ecosystems potentially vulnerable to global change

    Challenges in Integrating Biological Data Sources

    Get PDF
    this report, we examine the technical challenges to integration, critique the available tools and resources, and compare the cost and advantages of various methodologies. We begin by analyzing the basic steps in strict and complete integration: 1) transformation of the various schemas to a common data model; 2) matching of semantically related schema objects; 3) schema integration; 4) transformation of data to the federated database on demand; and 5) matching of semantically equivalent data. Some progress has been made on generic problems such as (1) and (3) within the wider database community, but issues of semantics (steps (2) and (5)) have only been dealt with any degree of success by domain experts within the biological community. We then look at the solution space of integration strategies as defined by two axes, the "tightness" of federation and the "degree" of instantiation, discuss where various solutions fall on this plane, and examine their cost and advantages/disadvantages. Finally, we examine technical challenges that are not -3- July 12, 199

    Systems biology driven software design for the research enterprise

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In systems biology, and many other areas of research, there is a need for the interoperability of tools and data sources that were not originally designed to be integrated. Due to the interdisciplinary nature of systems biology, and its association with high throughput experimental platforms, there is an additional need to continually integrate new technologies. As scientists work in isolated groups, integration with other groups is rarely a consideration when building the required software tools.</p> <p>Results</p> <p>We illustrate an approach, through the discussion of a purpose built software architecture, which allows disparate groups to reuse tools and access data sources in a common manner. The architecture allows for: the rapid development of distributed applications; interoperability, so it can be used by a wide variety of developers and computational biologists; development using standard tools, so that it is easy to maintain and does not require a large development effort; extensibility, so that new technologies and data types can be incorporated; and non intrusive development, insofar as researchers need not to adhere to a pre-existing object model.</p> <p>Conclusion</p> <p>By using a relatively simple integration strategy, based upon a common identity system and dynamically discovered interoperable services, a light-weight software architecture can become the focal point through which scientists can both get access to and analyse the plethora of experimentally derived data.</p

    Biowep: a workflow enactment portal for bioinformatics applications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The huge amount of biological information, its distribution over the Internet and the heterogeneity of available software tools makes the adoption of new data integration and analysis network tools a necessity in bioinformatics. ICT standards and tools, like Web Services and Workflow Management Systems (WMS), can support the creation and deployment of such systems. Many Web Services are already available and some WMS have been proposed. They assume that researchers know which bioinformatics resources can be reached through a programmatic interface and that they are skilled in programming and building workflows. Therefore, they are not viable to the majority of unskilled researchers. A portal enabling these to take profit from new technologies is still missing.</p> <p>Results</p> <p>We designed biowep, a web based client application that allows for the selection and execution of a set of predefined workflows. The system is available on-line. Biowep architecture includes a Workflow Manager, a User Interface and a Workflow Executor. The task of the Workflow Manager is the creation and annotation of workflows. These can be created by using either the Taverna Workbench or BioWMS. Enactment of workflows is carried out by FreeFluo for Taverna workflows and by BioAgent/Hermes, a mobile agent-based middleware, for BioWMS ones. Main workflows' processing steps are annotated on the basis of their input and output, elaboration type and application domain by using a classification of bioinformatics data and tasks. The interface supports users authentication and profiling. Workflows can be selected on the basis of users' profiles and can be searched through their annotations. Results can be saved.</p> <p>Conclusion</p> <p>We developed a web system that support the selection and execution of predefined workflows, thus simplifying access for all researchers. The implementation of Web Services allowing specialized software to interact with an exhaustive set of biomedical databases and analysis software and the creation of effective workflows can significantly improve automation of in-silico analysis. Biowep is available for interested researchers as a reference portal. They are invited to submit their workflows to the workflow repository. Biowep is further being developed in the sphere of the Laboratory of Interdisciplinary Technologies in Bioinformatics – LITBIO.</p

    Determinants of legacy effects in pine trees – implications from an irrigation-stop experiment

    Get PDF
    Tree responses to altered water availability range from immediate (e.g. stomatal regulation) to delayed (e.g. crown size adjustment). The interplay of the different response times and processes, and their effects on long-term whole-tree performance, however, is hardly understood. Here we investigated legacy effects on structures and functions of mature Scots pine in a dry inner-Alpine Swiss valley after stopping an 11-yr lasting irrigation treatment. Measured ecophysiological time series were analysed and interpreted with a system-analytic tree model. We found that the irrigation stop led to a cascade of downregulations of physiological and morphological processes with different response times. Biophysical processes responded within days, whereas needle and shoot lengths, crown transparency, and radial stem growth reached control levels after up to 4 yr only. Modelling suggested that organ and carbon reserve turnover rates play a key role for a tree’s responsiveness to environmental changes. Needle turnover rate was found to be most important to accurately model stem growth dynamics. We conclude that leaf area and its adjustment time to new conditions is the main determinant for radial stem growth of pine trees as the transpiring area needs to be supported by a proportional amount of sapwood, despite the growth-inhibiting environmental conditions

    Catching the future : Applying Bayesian belief networks to exploratory scenario storylines to assess long‐term changes in Baltic herring (Clupea harengus membras, Clupeidae) and salmon (Salmo salar, Salmonidae) fisheries

    Get PDF
    Fisheries management aims to ensure that the fishing activities are environmentally sustainable in the long term, while also achieving the economic, social and food security related management objectives. To facilitate this, both the ecological and human dimensions of sustainability need to be included in fisheries assessment. In addition, assessing long-term sustainability calls for taking into account plausible changes in the surrounding societal conditions that shape the characteristics of the fisheries governance system, as well as the ecological conditions. The paper uses a combination of qualitative exploratory scenario storylines (ESS) and Bayesian belief networks (BBN) to integrate the environmental, economic, social and food security dimensions in an interdisciplinary assessment of the future sustainability of Baltic herring (Clupea harengus membras, Clupeidae) and salmon (Salmo salar, Salmonidae) fisheries. First, four alternative ESS were created based on plausible changes in societal drivers. The ESS were then formulated into a BBN to (a) visualize the assumed causalities, and (b) examine quantitatively how changes in the societal drivers affect the social-ecological fisheries system and ultimately the fisheries management objectives. This type of probabilistic scenario synthesis can help in thinking qualitative scenarios in a quantitative way. Moreover, it can increase understanding on the causal links between societal driving forces and the complex fisheries system and on how the management objectives can be achieved, thereby providing valuable information for strategic decision-making under uncertainty.Peer reviewe

    Trapped in the prison of the mind: notions of climate-induced (im)mobility decision-making and wellbeing from an urban informal settlement in Bangladesh

    Get PDF
    The concept of Trapped Populations has until date mainly referred to people ‘trapped’ in environmentally high-risk rural areas due to economic constraints. This article attempts to widen our understanding of the concept by investigating climate-induced socio-psychological immobility and its link to Internally Displaced People’s (IDPs) wellbeing in a slum of Dhaka. People migrated here due to environmental changes back on Bhola Island and named the settlement Bhola Slum after their home. In this way, many found themselves ‘immobile’ after having been mobile—unable to move back home, and unable to move to other parts of Dhaka, Bangladesh, or beyond. The analysis incorporates the emotional and psychosocial aspects of the diverse immobility states. Mind and emotion are vital to better understand people’s (im)mobility decision-making and wellbeing status. The study applies an innovative and interdisciplinary methodological approach combining Q-methodology and discourse analysis (DA). This mixed-method illustrates a replicable approach to capture the complex state of climate-induced (im)mobility and its interlinkages to people’s wellbeing. People reported facing non-economic losses due to the move, such as identity, honour, sense of belonging and mental health. These psychosocial processes helped explain why some people ended up ‘trapped’ or immobile. The psychosocial constraints paralysed them mentally, as well as geographically. More empirical evidence on how climate change influences people’s wellbeing and mental health will be important to provide us with insights in how to best support vulnerable people having faced climatic impacts, and build more sustainable climate policy frameworks
    corecore